
MULTITHREADING

MUSIC PLAYER TASK (https://www.dropbox.com/s/k8zvzpw9h1ijsrh/MUSIC_PLAYER.rar?dl=0)

• TO UNDERSTAND THE CONCEPT OF MULTITHREADING WE FIRST NEED TO UNDERSTAND

THE CONCEPT OF MULTITASKING AND MULTIPROCESSING

MULTITASKING➔
• PERFORMING OR EXECUTING MORE THAN ONE TASK AT THE SAME TIME IS CALLED AS

MULTITASKING

• TASK IS THE END GOAL THAT HAS TO BE ACHIVED

• TASK CAN BE CALLED AS A COMBINATION OF MORE THAN ONE PROCESS

 MULTIPROCESSING

P1 P2 P3

P4 P5 P6

P7 P8 P9

• PERFORMING OR EXECUTING MORE THAN ONE PROCESS AT A SAMETIME IS CALLED AS

MULTIPROCESSING

• THE STEPS INVOLVED IN COMPLETION OF THE TASK ARE CALLED AS PROCESS

• A PROCESS IS A COMBINATION OF MORE THAN ONE THREAD

 PROCESS(THREAD)

T1 T2 T3

T4 T5 T6

T7 T8 T9

• THREAD IS THE SMALLEST UNIT OF PROCESS

• A THREAD CAN ALSO BE CALLED AS LIGHT WEIGHT PROCESS

https://www.dropbox.com/s/k8zvzpw9h1ijsrh/MUSIC_PLAYER.rar?dl=0

• EXECUTING OR IMPLEMENTING MORE THAN ONE THREAD AT THE SAMETIME US CALLED AS

MULTITHREADING

THREAD IN JAVA➔

• IN JAVA THREAD IS SPECIAL CLASS WHICH CAN BE CREATED IN TWO WAYS
I. EXTENDING THREAD CLASS

II. IMPLEMENTING RUNNALBLE INTERFACE

LIFE CYCLE OF A THREAD ➔

• START TO RUNNING =WHEN A THREAD IS INITIALIZED AND THE RESOURCES REQUIRED FOR ITS

EXECUTION ARE ALLOCATED TO IT THEN THREAD MOVES FROM START PHASE TO THE RUNNING

PHASE

 RESOURCE

 ALLOCATED

• START TO WAIT =WHEN A THREAD IS INITIALIZED BUT THE RESOURCES REQUIRED FOR ITS

EXECUTION ARE NOT ALLOCATED TO IT THEN THREAD MOVES FROM START PHASE TO THE WAIT

PHASE

START

RUNNING

END

WAIT

RUNNING

START

 RESOUTCE NOT AQUIRED

• RUNNING TO WAIT =IF THE THREAD IS IN RUNNING PHASE THE RESOURCES ALLOCATED TO IT

ARE TAKEN AWAY THEN THREAD MOVES FROM RUNNING PHASE TO THE WAIT PHASE

 RESOUTCE TAKEN AWAY

• WAIT TO RUNNING =IF THE THREAD IS IN WAIT PHASE AND THE RESOURCES REQUIRED FOR

ITS EXECUTION ARE ALLOCATED TO IT THEN THREAD MOVES FROM WAIT PHASE TO THE

RUNNING PHASE

 RESOURCES AQUIRED

• RUNNING TO END =IF THE THREAD IS IN RUNNING PHASE AND COMPETES ITS EXECUTION THEN

THREAD MOVES FROM RUNNING PHASE TO THE END PHASE

 EXECUTION COMPLETED

• WAIT TO END =IF THE THREAD IS IN WAITING FOR RESOURCE FOR LONG TIME THEN IT WILL

MOVE FROM WAIT PHASE TO THE END PHASE

 WAITING FOR LONG TIME

NOTE:ALL THE PHASES OF THE THREAD ARE REPRESENTED AS METHODS OF A THREAD

1ST WAY OF THREAD CREATION➔

Mythread1.java
public class MyThread extends thread {

 @Override

 public void run() {

 System.out.println("thread is running");

 }

}

START WAIT

RUNNING WAIT

WAIT RUNNING

RUNNING END

WAIT END

Thread1.java

public class Threadmain {

 public static void main(String[] args) {

 MyThread1 mythread1 = new MyThread1();

 mythread1.run();

 }

}

START () ; ➔

• IT IA A NONSTATIC METHOD PRESENT IN THE THREAD CLASS

• TO START A CLASS OBJECT AS A THREAD IT IS MANDATORY TO USE START METHOD

• THIS METHOD IMPLICTLY CALLS THE RUN METHOD FROM THE TARGET CLASS

RUN () ; ➔

• THIS METHOD IS USED TO DEFINE THE BEHAVIOUR (EXECUTION LOGIC) OF THE

THREAD

2ND WAY OF THREAD EXECUTION

Mythread.java

public class MyThread implements Runnable {

 @Override

 public void run() {

 System.out.println("thread is running");

 }

}

Threadmain.java

public class Threadmain {

 public static void main(String[] args) {

 MyThread1 mythread1 = new MyThread1();

 Thread thread=new Thread(mythread1);

 thread.start();

 }

}

• IN THIS CASE THERE IS NO RELATION BETWEEN MYTHREAD CLASS AND THREAD CLASS HENCE
WE CANNOT ACCESS THE START METHOD WITH THE HELP OF MYTHREAD CLASS OBJECT

• THAT IS WHY ER NEED TO CREATE THE OBJECT FOR THREAD CLASS AND PASS THE OBJECT OF
MYTHREAD CLASS AS THE ARGUMENT TO THE THREAD CLASS OVERLOADED CONSTRUCTOR BY

DOING THIS THE THREAD CLASS WILL IGNORE ITS OWN BEHAVIOUR AND ACCEPT THE
BEHAVIOUR OF MYTHREAD CLASS

• EXPECTED OUTPUT

Mythread is now running

Mythread is now running

Mythread is now running

Mythread is now running

Mythread1 is now running

Mythread1 is now running

Mythread1 is now running

Mythread1 is now running

Mythread1 is now running

• THE ACTUAL OUTPUT MIGHT DIFFER FROM EXPECTED OUTPUT WHEN MULTIPLE THREADS ARE
CALLED FOR EXECUTION SIMALTANEOUSLY IS THREAD WILL BE ALLOCATED WITH A SEPRATE
STACK THE OUTPUT WILL DEPEND ON THE ORDERS OF EXECUTION OF THE STACKS THE
CONTROL OF EXECUTION MIGHR BE GIVEN FROM ONE STACK TO ANOTHER AT ANY POINT OF
TIME THIS DONE BY COMPONENT CALLED AS THREAD SCHELUDER

THREAD SCHELUDER➔

• THREAD SCHELUDER IS A COMPONENT IN MULTITHREADING THAT IS RESPONSIBLE TO MANAGE

AND CONTROL THE EXECUTION OD MULTIPLE THREADS

• IT IS ALSO RESPONSIBLE TO CREATE DEDICATED FOR EACH THREAD AND TRANSFER THE

CONTROL BETWEEN STACK BASED ON THREAD PROPERTIES

THREAD PROPERTIES➔

• EVERY THREAD IS CREATED WILL HAVE PROPERTIES OF ITS OWN THAT ARE AS FOLLOWS

I. NAME

II. PRIORITY

• THESE THREAD PROPERTIES CAN BE ACCESS AND MODIFIED WITH THE HELP OF ITS GETTERS

AND SETTERS

MyThread1.java

public class MyThread1 extends Thread {

 @Override

 public void run() {

 System.out.println("thread1 is running" +this.getName());

 System.out.println("the priority of the thread is"

 +this.getPriority());

 }

}

ThreadMain.java
public class Threadmain {

 public static void main(String[] args) {

 MyThread1 mythread1 = new MyThread1();

 mythread1.setName("chomu");

 mythread1.setPriority(3);

 mythread1.start();

 }

}

GetName(); ➔

• IT IS A NONSTATIC METHOD PRESENT IN THE THREAD CLASS.

• IT IS USED TO RETRIVE THE NAME OF THE THREAD.

SetName(); ➔

• IT IS A NONSATAIC METHOD PRESENT IN THE THREAD CALSSS WHICH ACCEPTS A STRING

ARGUMENT

• SetName(String args);

• IT IS USED TO MODIFY OR SET THE NAME OF THE THREAD

getPriority(); ➔

• IT IS NONSTATIC METHOD IN THREAD CLASS

• IT IS USED TO RETRIVE PRIORITY OF THE THREAD CALSS

setPriority(); ➔

• IT IS NONSTATIC METHOD PRESENT IN THREAD CLASS

• WHICH ACCEPTS AN INTEGER ARGUMENT

• SetPriority(int Priority) ;

• IT IS USED TO MODIFY OR SET THE PRIORITY OF THE THREAD

currentThread(); ➔

• IT IS A STATIC METHOD PRESENT IN THE THREAD CLASS IT HELPS US TO POINT TOWARDS THE

CURRENT OBJECT OF THE THREAD CLASS

MyThread.java

public class MyThread implements Runnable {

 @Override

 public void run() {

 System.out.println("thread is

 running"+Thread.currentThread().getName());

 System.out.println("the priority of thead is

 "+Thread.currentThread().getPriority());

 }

}

ThreadMain.java

public class Threadmain {

 public static void main(String[] args) {

 MyThread mythread = new MyThread();

 Thread thread=new Thread(mythread);

 thread.setName("mythread");

 thread.setPriority(2);

 thread.start();

 }

}

Stop(); ➔

• IT IS NON STATIC METHOD PRESENT INSIDE THREAD CLASS

• IT IS USED TO MOVE THREAD FROM A RUNNING PHASE TO THE STOP PHASE

• WITH THE HELP OF THIS METHOD WE CAN STOP THE EXECUTION OF CURRENTLY EXECUTING

THREAD FORCEFULLY

• NOTE: THE STOP METHOD IS DEPRICATED (SOMETHING OLD OR NOT IN USE).

Account.java

public class account {

 double account_balance;

 account(double balance){

 this.account_balance=balance;

 }

 public double check_balance() {

 return account_balance;

 }

 public void deposite(double amount) {

 System.out.println("depositing"+amount+"in account");

 System.out.println("current balance:"+check_balance());

 }

 public void withdraw(double amount) {

 System.out.println("withdraw "+ amount+" from account");

 System.out.println("current balance "+check_balance());

 }

}

Husband.java
public class husband extends Thread {

 account acc;

 public husband(account ac) {

 this.acc=ac;

 }

 public void run() {

 acc.deposite(1000);

 acc.withdraw(500);

 }

}

Wife.java
public class wife extends Thread {

 account acc;

 public wife(account ac) {

 this.acc=ac;

 }

 public void run() {

 acc.deposite(500);

 acc.withdraw(5000);

 }

}

AccountMain.java
public class accmain {

 public static void main(String[] args) {

 account ac = new account(10000);

 husband hu = new husband(ac);

 wife wi = new wife(ac);

 hu.start();

 wi.start();

 }

}

• IN MULTITHREADING ALL THE THREADS ARE UNAWARE ABOUT THE OPERATIONS PERFORMED
ON SAME RESOURCE BY ALL THE OTHER THREADS WHICH MAY LEAD TO DATA INCONSISTANCY

• IN THIS CASE THE HUSBAND THREAD AND WIFE THREAD ARE WORKING ON THE SAME OBJECT
ON THE ACCOUNT CLASS BUT BOTH THE THREADS ARE UNAWARE OF EACH OTHER OPERATIONS
ON THE RESOURCE WHICH RESULT IN CONSISTANT FINAL ACCOUNT BALANCE

EXAMPLE TASK: (https://www.dropbox.com/s/qx24jjs4dq8j6az/task.rar?dl=0)

https://www.dropbox.com/s/qx24jjs4dq8j6az/task.rar?dl=0

SYNCHRONIZATION
• IT IS A PROCEDURE OF ACHEVING DATA CONSISTINCY WHILE EXECUTING MULTIPLE THREADS

THAT ARE WORKING OR OPERATING ON THE SAME RESOURCE

• TO ACHIVE SYNCHRONIZATION WE NEED TO MAKE THE USE OF SYNCHRONIZED KEYWORD

• IF SYNCHRONIZED KEYWORD IS USED ALONG WITH A RESOURCE THEN ONLY ONE THREAD IS
ALLOWDED TO ACCESS IT AT A TIME

• IT CAN BE SAID THAT IF A RESOURCE IS SYNCHRONIZED THEN THE THREAD WHICH IS ACCESSING
THAT RESOURCE WILL APPLY LOCK ON THAT RESOURCE

LOCKS IN MULTI THREADING➔

• IN MULTI THREADING THERE ARE TYPES OF LOCKS
I. OBJECT LOCK

II. CLASS LOCK

SHARED RESOURCE➔

• THE RESOURCE WHICH IS ACCESSED NY MORE THAN ONE THREAD IS CALLED AS SHARED
RESOURCE

OBJECT LOCK➔

• THE SYNCHRONISED SHARED RESOURCE IS NON STATIC MEMBER THEN THE LOCK APPLIED ON IT
WILL BE OBJECT LOCK

CLASS LOCK➔

• THE SHARED SYNCHRONISED MEMBER ARE ONE OF STATIC TYPE THEN IS CALLED AS CLASS LOCK

SHARED

SYNCHRONISED

RESOURCE

T1
T2

RELEASE LOCK

RELEASE LOCK

RELEASE LOCK

APPLY LOCK

APPLY LOCK

APPLY LOCK

AccountMain.java

public class account {

 double account_balance;

 account(double balance) {

 this.account_balance = balance;

 }

 public double check_balance() {

 return account_balance;

 }

 public synchronized void deposite(double amount) {

 System.out.println("depositing " + amount + " in account");

 this.account_balance += amount;

 System.out.println("current balance: " + check_balance());

 }

 public synchronized void withdraw(double amount) {

 System.out.println("withdraw " + amount + " from account");

 this.account_balance -= amount;

 System.out.println("current balance " + check_balance());

 }

}

WAIT() ; ➔

• IT IS A NON-STATIC METHOD PRESENT IN THE THREAD CLASS IT IS USED TO PAUSE THE
EXECUTION OF THE CURRENTLY EXECUTING THREAD AND MOVE IT FROM RUNNING PHASE TO
WAIT PHASE FORCEFULLY

NOTIFY() ; ➔

• IT IS A NON-STATIC METHOD PRESENT IN THE THREAD CLASS IT IS USED TO CALL THE WAITING
THREAD TO RESUME ITS EXECUTION IT MOVES THE THREAD FROM WAITING PHASE TO
RUNNING PHASE FORCEFULLY

NOTIFYALL() ; ➔

• IT IS A NON-STATIC METHOD PRESENT IN THE THREAD CLASS IT IS USED TO CALL THE WAITING
THREADS TO RESUME THEIR EXECUTION IT MOVES THE THREADS FROM WAITING PHASE TO
RUNNING PHASE FORCEFULLY

Pizza.java

public class pizza {

 private int no_of_Pizza;

 public synchronized void orderPizza(int orderedPizza) {

 System.out.println("Ordering " + orderedPizza + " pizzas");

 if (orderedPizza > no_of_Pizza) {

 System.out.println(orderedPizza + " pizzas not available");

 System.out.println("Please wait..!!");

 try {

 this.wait();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 no_of_Pizza -= orderedPizza;

 System.out.println("Ordered " + orderedPizza + "pizzas

 successfully.");

 }

 }

 public synchronized void makePizza(int made_Pizza) {

 System.out.println("Making " + made_Pizza + " pizzas");

 no_of_Pizza += made_Pizza;

 System.out.println(no_of_Pizza + " pizzas available");

 this.notify();

 }

}

friends.java

public class friends extends Thread {

 private pizza pizza;

 public friends(pizza pizza) {

 this.pizza = pizza;

 }

 @Override

 public void run() {

 pizza.orderPizza(5);

 }

}

Pizzahut.java

public class Pizzahut extends Thread {

 private pizza pizza;

 public Pizzahut (pizza pizza) {

 this.pizza = pizza;

 }

 @Override

 public void run() {

 pizza.makePizza(5);

 I}

}

Pizzamain.java

public class PIZZAMAIN {

 public static void main(String[] args) {

 pizza pizza = new pizza();

 friends friends = new friends(pizza);

 Pizzahut pizzaHut = new Pizzahut(pizza);

 friends.start();

 pizzaHut.start();

 }

}

NOTE: A THREAD WHICH HAS BEEN PUT TO THE WAIT STATE FORCEFULLY WILL NOT RESUME ITS

EXECUTION ON ITS OWN

SLEEP() ; ➔

• IT IS STATIC METHOD PRESENT IN THE THREAD CLASS

• IT IS SIMILAR TO THE WAIT METHOD I.E. IT IS USED TO PAUSE THE EXECUTION OF CURRENTLY

EXECUTING THREAD

• UNLIKE WAIT METHOD THE SLEEP METHOD DOES NOT NEED THE NOTIFY METHOD TO CALL THE

THREAD TO RESUME ITS EXECUTION IT ACCEPTS A LONG VARIABLE AS AN ARGUMENT THAT

REPERESENTS THE TIME DURATION IN MILISECONDS.

Sleepdemo.java
public class SLEEP {

 public static void main(String[] args) {

 String message = "This is the magic of sleep()";

 char[] messageArray = message.toCharArray();

 for (int i = 0; i < message.length(); i++) {

 System.out.print(messageArray[i]);

 try {

 Thread.sleep(500);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 }

}

 DEMON THREADS➔

• THE THREADS CREATED USING THREAD CLASS ARE RUNNABLE INTERFACE ARE KNOWN AS USER
DEFINED THREADS SUCH THREADS ANEED TO BE CALLED FOR EXECUTION

• IN JAVA THERE ARE SOME PREDEFINED THREADS THAT ARE CALLED FOR EXECUTION IMPLICTLY
BY THE JVM SUCH THREADS ARE KNOWN AS DEMON THREADS

• DEMON THREADS ARE OF LOW PRIORITY

• THE MOST IMPORTANT DEMON THREAD IS GRABAGE COLLECTION

GARBAGE COLLECTION➔

• THE GARBAGE COLLECTION DEMON THREAD IS RESPONSIBLE TO REMOVE UNWANTED OBJECTS
FROM THE MEMORY

• IT IS CALLED IMPLICTILY BY THE JVM WHENEVER REQUIRED

• IT IS CALLED FOR EXECUTION IN TWO SITUATIONS
I. AFTER DEREFERING AN OBJECT

II. AFTYER NULLIFIYING AN OBJECT

DEREFERING ➔

A a1=new A();

A a2=new A();

a1=a2;

@100

@200

GARBAGE COLLECTED

NULLIFYING ➔

A a1=new A();

a1=NULL;

ADVANTAGES OF GARBAGE COLLECTION➔

• IT MAKES JAVA EFFICIENT IN MEMORY MANAGEMENT

• BECAUSE OF GARBAGE COLLECTION DEMON THREAD THE PROGRAMMER DOES NOT NEED TO
TAKE CARE OF MEMORY MANAGEMENT
NOTE:THE USED DEFINED THREADS CAN BE MADE TO BEHAVE ASA DEMON THREAD WITH THE
HELP OF SETDEMON () ;

• IT CAN BE DONE BY PASSING “TRUE” AS AGRUMENT TO THIS METHOD

Stop() class/Interface - Thread (java.lang.Thread)
Modifier- public
Return type-void
Header - 1 public final void stop(),
 2 public final vold stop
Argument → The Throwable object to be thrown
member-non-static
Exception - Security Exception - This exception comer When the current thread can't change this thread;

notify()
class / Interface - Object (java.lang.Object)
Modifier- public
Return type - void
Header - public final void notify ()
Argument- None.
Member - Non-static
Exception-illegalMonitorStateException

notifyALL()
Class / Interface - Object (Java.Lang.Object)

@100 GARBAGE COLLECTED

Modifier - public
Return type- wold
Header- public final void notify All()
Argument - None
Member - non-static
Exception-illegalMonitorStateException

sleep()
class/Interface- Java lang package.
modifier- public
Return type- void
Header -1-public static vold sleep (long milliseconds)
 2-public static void sleep (long milliseconds,int nanoseconds)
Argument-1-millisecond
 2-nanoseconds(0 to 999999)
Member non-static
Exception - None

Current Thread ()
class/Interface :- Theuad (java.lang. Thread)
modifier- public
Returntype-it return currently executing Thread.
Header- public static thread current thread ()
Argument - None
Member - non-static
Exception - None.

start ()-
class / Interface :- Thread (Java.lang.Thread)
Modifier :- public
Retuin type- void
Header - public void start()
Argument -None
Member - non-static
Exception-none

wait()
class / Interface - Object (java.lang.Object)
Modifier - public
Return type-void
Header - Public final void wait()
Argument :- long

Member - non-static
Exception-interruptedException

run()
class / Interface - Thread (java.lang.Thread)
Modifier - public
Return type- vold
Header - public void run()
Avigument - None
Member - non-static.
Exception - None.

 // MULTITHREADING ENDS //

